A Proposed Data Stream Clustering Method for Detecting Anomaly Events in Crowd Scene Surveillance videos

Abdulamir A. Karim and Narjis Mezaal Shati

1University of Technology - Department of Computer Science
2University of Al-mustansiryah - College of Science - Department of Computer Science

Ammeer_aldelphi@yahoo.com
Nareen_manar@yahoo.com

Received 6 March 2017 Accepted 26 March 2017

Abstract

In this research, a new data stream clustering method utilizing seed based region growing technique is implemented to perform abnormal event detection in anomaly detection system in a new data stream clustering method used in abnormal detection system. This is done by applying HARRIS or FAST detectors on the frames of video clips in two publically available datasets. The first UCSD pedestrian dataset (ped1 and ped2 datasets), and the second VIRAT video dataset system to extract list of pairs of interest points. From these pairs a list of features such as: distance, direction, x-coordinate, y-coordinate obtained to use as an input to the new clustering method. This method in using HARRIS detector achieves detection rates about (9.09%, 52.17%, 61.67%), and the false alarm rates are (18.79%, 36.09%, 66.67%) by using Ped1, Ped2, and VIRAT datasets respectively. For the case of using FAST detector, the best-achieved detection rates are (7.88%, 46.09%, 58.33%), and the false alarms are (21.21%, 40.87%, 63.33%) by using the three previously mentioned benchmarks respectively.

Key words: Surveillance Systems, Anomaly Detection, Crowed Scene Detection, Anomaly Events, Abnormal Event Detection.
A Proposed Data Stream Clustering Method for Detecting Anomaly Events in Crowd Scene Surveillance videos
Abdulamir A. Karim and Narjis Mezaal Shati

Introduction

The increase in the number of cameras in urban areas like the advent of very high capacity digital video recorders (DVRs), the development of Internet protocol (IP) networks (IP cameras), and the technological advances in the protection of critical infrastructures lead to solve the problem of the incapability to exploit video streams in real time for the purposes of detection or anticipation. It involves having the videos analyzed by algorithms that detect and track objects of interest (usually people or vehicles) over time, and that indicate the presence of
events or suspect behavior involving these objects. The aim is to be able to alert operators in suspicious situations in real time, this called video content analysis but we may also come across the terms video analytics, intelligent video surveillance or smart video surveillance [1]. More and more surveillance cameras are being installed in different locations, including banks, government premises, railway stations, and houses, this led to development of technologies and systems in the area of intelligent surveillance in a variety of public or private areas for the sake of security and safety. Some related researches to investigate individual behavior detection are presented in [2, 3, 4] other investigating detection abnormal behavior in crowded action in [5, 6, 7, 8].

Detecting of Anomaly Events
Consequently, detecting unusual or suspicious activities, uncommon behaviors, or irregular events in a scene is the primary objective of an automated video surveillance system. Refer to this activity as anomaly detection because the sought-after situations are not observed frequently. The working definition of this term is taken to be the spatio-temporal compositions in a video or set of videos with low probability of occurrence with respect to the previous observations. The anomalies with respect to a pixel's context, means that a particular activity in a particular context would be an anomaly, while in another context it might be normal [5].

1. Detecting of Dominant and Rare Event Simultaneously
The dominant behaviors refer to the normal events observed in a scene. These are events that have a higher probability of occurrence than others in the video and generally do not attract much attention. These dominant behaviors are categorized into two classes. The first deals with foreground activities and the second describes the scene background. The second is referred to as background subtraction, but is more general and more complicated than background subtraction, because it includes the scene background while not being limited to it, that learn both normal and abnormal patterns [5].
A Proposed Data Stream Clustering Method for Detecting Anomaly Events in Crowd Scene Surveillance videos

Abdulamir A. Karim and Narjis Mezaal Shati

2. Features of Human Behavior

The information provided by surveillance video feeds represented in various human behavior representations, such as commonly occupied region, human trajectory shape and bag-of-words techniques (code book representation). The first and second are used when the camera is far from the subject, but the last is suitable when human limb movements are observable and also referred to as interest points based methods [9, 10,11].

Human behavior features are divided into two major parts: Human global motion and Human local motion features. Human Global Motion features utilize the information on a subject location at various times. It is useful when human limb movements are not observable. The systems using this features considers only the tracking information of each subject’s locations at a time. There is a lot of information extracted from human trajectories, such as (Commonly occupied region, Human walking path shape) [12].

Human Local Motion features are useful when human limb movements can be discerned in video feeds. Based on the degree of not-rigidity of the objects, human motion are classified as rigid or not rigid motions. Also there is articulated motion in which limb motions are rigid but overall motion is not rigid [13].

Categorization of human motion approaches is based on with/ without prior knowledge about the object shape. These category listed as follows:

- Model based approaches: Using prior knowledge about the shape of an objects [14].
- Appearance based approaches: Building body representation in a bottom-up fashion by first detecting appropriate features in a sequence of frames. Silhouettes and interest points are some examples of these features. These approaches do not require a specific object model but are sensitive to noise [15, 16]. Appearance based approaches are classified into three types: Flow based approaches, Spatial-temporal shape template base approach, and Interest point based approaches

The interest points extracted by interest points detectors. It is extension of key point's concept for object detection in images. One of the advantage of using interest points is that they can be
used to search an action contained in the short query video over a large resolution without using background subtraction and tracking of the object [16,17].

3. Interest Points Features
Interest points (salient points) are the local spatio-temporal features in a video segment that is detected by using an approach to detecting and matching these points in the video segment in both the temporal and spatial domains. It is detected when there is a region producing high response values. The interest points features are formed by the interest points and their surrounding neighborhoods. So it can be able to describe the action captured in a video segment [18]. In this paper interest points features are used by utilizing HARRIS or FAST detector, for more information about these detectors see [19,20].

4. Data Stream Clustering and Seed Based Region Growing Technique
A data stream model is defined as an ordered sequence of points x1, … , xn where (n \approx \infty). The sequence has to be read in order and once or a small number of times [21]. The data stream model requires decisions to be made before all the data becomes available. This model is similar to online models. So these models need algorithm (data stream algorithm). These algorithms are allowed to take action after a group of points arrives [21].

Seed Based Region Growing method is Segmentation technique. The basic idea in this method is to group a collection of pixels to form a region based on some similar properties; these properties may include intensity, texture or color, as shown in figure (1) [22,23].

![Seed Pixel Direction of Growth]
A Proposed Data Stream Clustering Method for Detecting Anomaly Events in Crowd Scene Surveillance videos

Abdulamir A. Karim and Narjis Mezaal Shati

Figure (1): Example of region growing. (a)Start of Growing a Region (b) Growing Process after a Few Iterations

Data stream and online clustering approaches are similar in that both of them require decisions made before all data are available. But these models are not identical because online algorithm can access the first i data point (with its previous i decisions) when reacting to the $(i+1)^{th}$ point, the amount of memory available to data stream algorithm is bounded by a function of the input size (sublinear function used). Also, a data stream approach not be required to take action after the arrival of each point (after a group of points) [18].

Data stream clustering approaches store and processes large scale data efficiently because it provides summarizations of the past data, see [24, 25, 26, 27, 28, 29] for more information. In this work seed filling clustering algorithm is utilized to form new data stream algorithm.

Design of Data Stream Clustering Algorithm Based on Seed Filling Technique

Anomaly behavior detection systems data stream clustering algorithm based on seed filling technique are created were trained and applied to the same datasets. Their performance were measured using (Detection Rate (DR), False Alarm Rate (FAR), Recall (R), Precision (P), The Coverage Test (CT)), for more detail about these measurements see [30, 31].

1. The Proposed Systems Layouts

The diagram for the proposed anomaly detection system is shown in figure (2).
2. Video Dataset

The selected video datasets are two publicly available datasets. The first is the UCSD dataset: pedestrians’ datasets (ped1) and (ped2); and the second is VARAT dataset. The entire set of the selected video dataset is divided into two sets of videos: (i) a training video set is used for the developments of a system, and (ii) a test video set contains videos used to measure the anomaly behavior detection performance of the system.

3. Preprocessing

Converting to gray preprocessing applied on both training and test datasets to make the data of both training and test sets more suitable and easier to analyses. Preprocessing is a necessary stage when the requirements are typically obvious and simple. In this step the frames of video dataset are converted to gray image: basically each pixel in extracted color sub-image has three components of color (red, green, blue), the value of each color component is represented by one byte. The gray value to each pixel is computed by using average method and the process of computing values of all pixels leads to convert the color frame to gray frame.

4. Feature Generation

From the training and test video clips of dataset an interest points information’s such as: interest points pairs and (distance, direction, x-coordinate, y-coordinate) of these pairs are extracted. This done in feature detection and feature matching phases by utilizing interest points detectors HARRIS or FAST to extract interest points from the current frame and previous frame (according to predefined threshold PFT) and then matching these interest points from both frames to obtains list of pairs of interest points. The process illustrated in (1, 2) algorithms. After that an extraction process will be done to estimate list of features (distance, direction, x-coordinate, y-coordinate) from these pairs, see figure (3). This illustrated in algorithm (3).
A Proposed Data Stream Clustering Method for Detecting Anomaly Events in Crowd Scene Surveillance videos

Abdulamir A. Karim and Narjis Mezaal Shati

Figure (2) Diagram of the proposed systems: (a) Enrolment phase (b) Anomaly detection and localization phase
A Proposed Data Stream Clustering Method for Detecting Anomaly Events in Crowd Scene Surveillance videos

Abdulamir A. Karim and Narjis Mezaal Shati

Algorithm (1)// Detection and matching interest points using HARRIS

Input: Frames_List, PFT (Previous Frame Threshold), No. of Frames
Output: LOP (List of interest points pairs)

For n = 0 to Frame_List.count
 Detect interest points using HARRIS corner: Detector (Frames_List [n], Interest_Points_List [n])
 If n > PFT then
 Matching (Frames_List [n], Frames_List [n-PFT], Interest_Points_List [n], Interest_Points_List [n-PFT]), LOP)
 For i = 0 to LOP.count
 Compute (LOP[i].distance) using Euclidean distance between the two points of the pair (LOP[i])
 If LOP[i].distance < Low_Threshold or LOP[i].distance > Max_Threshold
 Remove (LOP[i])
 End If
 End For
End If
End For
End.

Algorithm (2)// Detection and matching interest points using FAST

Input: Frames_List, PFT (Previous Frame Threshold), No. of Frames
Output: LOP (List of interest points pairs)

For n = 0 to Frame_List.count
 Detect interest points using FAST corner: Detector (Frames_List [n], Interest_Points_List [n])
 If n > PFT then
 Matching (Frames_List [n], Frames_List [n-PFT], Interest_Points_List [n], Interest_Points_List [n-PFT]), LOP)
 For i = 0 to LOP.count
 Compute (LOP[i].distance) using Euclidean distance between the two points of the pair (LOP[i])
 If LOP[i].distance < Low_Threshold or LOP[i].distance > Max_Threshold
 Remove (LOP[i])
 End If
 End For
End If
End For
End.
Figure (3) Illustration of distance, inclination angle, x-coordinate, and y-coordinate for two points (P₁ and P₂)

Euclidean distance used to compute the distance between the two points (P₁(x₁,y₁) and P₂(x₂,y₂)) of each pair in list of pairs. Then calculate direction by finding the angle of inclination, as shown in the following equation and illustrated in algorithm (4).

$$\text{Dir} = \begin{cases} 0 & \text{if } (x_1-x_2>0) \text{ and } (y_1-y_2=0) \\ 90 & \text{if } (x_1-x_2=0) \text{ and } (y_1-y_2>0) \\ 180 & \text{if } (x_1-x_2<0) \text{ and } (y_1-y_2 = 0) \\ 270 & \text{if } (x_1-x_2=0) \text{ and } (y_1-y_2<0) \\ \tan^{-1}(y_1-y_2)/(x_1-x_2) & \text{otherwise} \end{cases}$$

$$\text{otherwise} \quad \text{ (1)}$$

After that, compute the x-coordinate and y-coordinate for the pair by finding the mid-point between the first and the second point of each pair, as show in the following equations.
5. Proposed Data Stream Clustering

In this paper a data stream model is defined as four features of each pairs of interest points which are obtained from the detection and matching feature phase. The proposed algorithm is used to make decision after a group of these features arrived and then these decisions (past data of clusters) are summarized and organized in a database; that gives a summarization of all clusters in limited memory size. This system utilizes seed based region growing technique as
seen in the following steps that illustrates the implemented steps for propose data stream clustering.

Second Proposed Data Stream Clustering System Algorithm Steps

Step 1: Read Video.

Step 2: Convert color frame to gray frame.

Step 3: Detection and matching interest points using (HARRIS | FAST) by using algorithms (1, 2) respectively.

Step 4: Compute distance, direction, x-coordinate, y-coordinate from interest points pairs using algorithm (3).

Step 5: Clustering list of features by algorithm (5) using Seed filling.

Steps: If training phase then Create Database_Clusters using algorithm (8)

Else Detect and localize anomaly behavior using algorithm (9)

End If

Starting with reading video clips from datasets (the training videos in training phase) or (testing videos in testing phase) to obtain list of video frames and number of frames, continuing by converting these frames to gray frames. And then extract list of interest pairs by applying interest points detector (HARRIS or FAST) as shown in (1 or 2) algorithms. After that extract list of interest points features such as: distance, direction, x-coordinate, y-coordinate, using (3) algorithm. The next step is clustering these extracted list of interest points features by investment seed based region growing technique in data stream clustering algorithm, this is done based on coordinates, as seen in (5) algorithm. In algorithm (5) test all pairs in list of pairs will be done, if the pair is not classified under any cluster, then it will be classified as new cluster and added to the list of classified neighbor pairs to be tested through computing the closest neighbor to it in list of pairs by using Euclidian distance, as shown in algorithm (6),
where the coordinate threshold is used to determine the neighbor when distance is less than it. And then, test all neighbor pairs if it is not classified to any cluster then it will be classified as the cluster of the tested pair and added to the classified neighbor pairs list to examine the neighbor pairs for it. After completing the test of the neighbor pairs list and there is more than one pair in the set a computation of new centroids for these neighbor pairs will be done and these new centroids are added to the list of centroids otherwise will be discarded and removed from the neighbor pairs list. The computation of new centroids will be done by allocating minx, miny, maxx, maxy for each group of neighbor pairs in the same cluster to determine the coordinates of the new cluster, also the average of distance and direction will be computed, as shown in (7) algorithm. Figure (4) illustrates the process of the second proposed data stream clustering algorithm based on coordinates.
A Proposed Data Stream Clustering Method for Detecting Anomaly Events in Crowd Scene Surveillance videos

Abdulamir A. Karim and Narjis Mezaal Shati

Figure (4): Illustrates proposed data stream clustering based on coordinates in various iterations, resulting in five clusters.

Algorithm (5)// Clustering list of features using Seed Filling technique based on coordinate

Input: LOF
Output: LOF, Centroids_list

For i = 0 to LOF.count
If LOF[i] is not classified then
 Set LOF[i] as a new cluster,
 Add LOF[i] to Cluster_List
End if
End for

If (Cluster_List.length > 1) then
 Calculate new centroids (dis+dir+cords+start+end) using algorithm (7)
 Add this centroid to centerids_list
End if
A Proposed Data Stream Clustering Method for Detecting Anomaly Events in Crowd Scene Surveillance videos

Abdulamir A. Karim and Narjis Mezaal Shati

Algorithm (6) // Compute closest neighbor
Input: LOF
Output: Neighbor_List

For i = 0 to LOF.count
For j = 0 to LOF.count
If (LOF[i].dis - LOF[j].dis) < dis_thr and (LOF[i].dir - LOF[j].dir) < dir_thr and (Euclidean distance between (LOF[i].coords, LOF[j]).coords) < dis_thr
Then Set neighbor_List [i,j] ← true
End if
End for
End for

End.

Algorithm (7) // Calculate new centroids
Input: Cluster_List
Output: One centroid

For each pair in Cluster_List
If (min_x > pair.start.x) than Set min_x ← pair.start.x
If (min_y > pair.start.y) than Set min_y ← pair.start.y
If (max_x < pair.end.x) than Set max_x ← pair.end.x
If (max_y < pair.end.y) than Set max_y ← pair.end.y
Set Dis ← dis + pair.dis
Set Dir ← dir + pair.dir
End for
Set Centroids.dis ← dis/centroids.count
Set Centroids.dir ← dir/centroids.count
Set Centroids.coords.x ← (min_x+max_x)/2
Set Centroids.coords.y ← (min_y+max_y)/2
Set Centroids.start.x ← min_x
Set Centroids.start.y ← min_y
Set Centroids.end.x ← max_x
Set Centroids.end.y ← max_y
End.
In enrolment phase the cluster database will be created in the clustering process, see algorithm (8). While in the anomaly detection and localization phase, the anomaly event and its location will be detect with help of previously database created.

```
Algorithm (8)// Training

Input: Centroids_list
Output: Database_Clusters (database of clusters)

For i = 0 to Centroids_list.count
    If record in Database_Clusters where record is equal to Centroids_list[i]
        Then Set Record. Frequnce ← Record. Frequnce+1
        Else Database_Clusters.add (Centroids_list[i])
    End If
End For
End.
```

6. Anomaly Behavior Detection and Localization

After completing the construction of cluster database from passing the training video dataset, it will be used in anomaly behavior detection in order to detect anomaly behavior in test video dataset and localize its position; algorithm (9) describe the anomaly behavior detection and localization. In this algorithm, the class obtained from the proposed data stream clustering algorithm in test phase and then search the database of clusters; that is obtained from the training phase; to find if this class is in the database, so it will be detected as anomaly event and its location in the frame is marked by using the coordinate from the clustering data stream process. Figure (5) shows anomaly detection in some frames.

```
Algorithm (9)// Anomaly behavior detection and localization

Input: Test video dataset, Database_Clusters (database of clusters)
Output: Anomaly_behavior_location

For i=0 to centroids_list.count
    If record in Database_Clusters where record equal to centroids_list[i] then
        Set Record.Frequnce ← Record. Frequnce +1
    Else Mark the position of anomaly behavior
End If
End For
End.
```
Figure (5) Sample of frames illustrating anomaly detection

Test Result

The proposed approach is tested on two datasets. The UCSD pedestrian dataset it contains video sequences from two pedestrian (Ped1 and Ped2) walkways where abnormal events occur. The dataset contains different crowd densities, and the anomalous patterns are the presence of non-pedestrians on a walkway (bicyclists, skaters, small carts, and people in wheelchairs). The second dataset is VIRAT Video Dataset was designed by Kitware Company to be more realistic, natural and challenging for video surveillance domains than existing action recognition datasets in terms of its resolution, background clutter, diversity in scenes, and human activity/event categories. Data are collected in natural scenes showing people performing normal actions in standard contexts, with uncontrolled, cluttered backgrounds. The key characteristics of these datasets are summarized in table (1).
A Proposed Data Stream Clustering Method for Detecting Anomaly Events in Crowd Scene Surveillance videos

Abdulamir A. Karim and Narjis Mezaal Shati

<table>
<thead>
<tr>
<th>Table (1) Key characteristics of training and testing video clips in datasets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entire dataset</td>
</tr>
<tr>
<td>--------------------</td>
</tr>
<tr>
<td>Training</td>
</tr>
<tr>
<td>Number of video clips</td>
</tr>
<tr>
<td>Frame Dimension</td>
</tr>
<tr>
<td>Frame rate</td>
</tr>
<tr>
<td>Test</td>
</tr>
<tr>
<td>Number of video clips</td>
</tr>
<tr>
<td>Frame Dimension</td>
</tr>
<tr>
<td>Frame rate</td>
</tr>
<tr>
<td>Anomaly Behavior Event</td>
</tr>
<tr>
<td>Number of anomaly events</td>
</tr>
</tbody>
</table>

The experiment was repeated 15 times, and the values of the used data stream clustering parameters shown in table (2). Table (3) illustrate the anomaly detection test results of UCSD (Ped1) video clips sets using features extracted from the interest points pairs as an input to the anomaly behavior detection system in both method of feature extraction using HARRIS or FAST detectors and the detail of the detection system are presented in tables (4, 5) using UCSD (ped2) dataset and VIRAT dataset respectively.

<table>
<thead>
<tr>
<th>Table (2) The proposed data stream clustering parameters.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Previous frame threshold (PFT)</td>
</tr>
<tr>
<td>Distance threshold</td>
</tr>
<tr>
<td>Direction threshold</td>
</tr>
<tr>
<td>Coordinate threshold</td>
</tr>
</tbody>
</table>
A Proposed Data Stream Clustering Method for Detecting Anomaly Events in Crowd Scene Surveillance videos

Abdulamir A. Karim and Narjis Mezaal Shati

Table (3) Results of the anomaly behavior detection system by using UCSD (Ped1) dataset (PFT=5; Distance threshold=2; Direction threshold=1; Coordinate threshold=25; Repetition=15)

<table>
<thead>
<tr>
<th></th>
<th>Expt.</th>
<th>Training Time (ms/ frame)</th>
<th>Testing Time (ms/ frame)</th>
<th>DR (%)</th>
<th>FAR (%)</th>
<th>R</th>
<th>P</th>
<th>CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HARRIS</td>
<td>Min</td>
<td>2.18</td>
<td>2.91</td>
<td>8.48</td>
<td>20.00</td>
<td>0.08</td>
<td>0.30</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>2.18</td>
<td>3.02</td>
<td>9.70</td>
<td>18.18</td>
<td>0.10</td>
<td>0.35</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>2.18</td>
<td>3.11</td>
<td>9.09</td>
<td>18.79</td>
<td>0.09</td>
<td>0.33</td>
<td>0.14</td>
</tr>
<tr>
<td>FAST</td>
<td>Min</td>
<td>2.43</td>
<td>2.84</td>
<td>7.27</td>
<td>23.64</td>
<td>0.07</td>
<td>0.24</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>2.43</td>
<td>3.11</td>
<td>9.09</td>
<td>23.03</td>
<td>0.09</td>
<td>0.28</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>2.43</td>
<td>2.40</td>
<td>7.88</td>
<td>21.21</td>
<td>0.08</td>
<td>0.27</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Table (4) Results of the anomaly behavior detection system by using UCSD (Ped2) dataset (PFT=3; Distance threshold=2; Direction threshold=1; Coordinate threshold=25; Repetition=15)

<table>
<thead>
<tr>
<th></th>
<th>Expt.</th>
<th>Training Time (ms/ frame)</th>
<th>Testing Time (ms/ frame)</th>
<th>DR (%)</th>
<th>FAR (%)</th>
<th>R</th>
<th>P</th>
<th>CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HARRIS</td>
<td>Min</td>
<td>2.97</td>
<td>3.31</td>
<td>48.70</td>
<td>35.65</td>
<td>0.49</td>
<td>0.58</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>2.97</td>
<td>3.44</td>
<td>54.35</td>
<td>34.78</td>
<td>0.54</td>
<td>0.61</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>2.97</td>
<td>3.12</td>
<td>52.17</td>
<td>36.09</td>
<td>0.52</td>
<td>0.59</td>
<td>0.55</td>
</tr>
<tr>
<td>FAST</td>
<td>Min</td>
<td>2.43</td>
<td>2.72</td>
<td>44.35</td>
<td>39.13</td>
<td>0.44</td>
<td>0.53</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>2.43</td>
<td>3.14</td>
<td>47.83</td>
<td>40.00</td>
<td>0.48</td>
<td>0.54</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>2.43</td>
<td>2.67</td>
<td>46.09</td>
<td>40.87</td>
<td>0.46</td>
<td>0.53</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Table (5) Results of the anomaly behavior detection system by using VIRAT dataset (PFT=3; Distance threshold=2; Direction threshold=1; Coordinate threshold=25; Repetition=15)

<table>
<thead>
<tr>
<th></th>
<th>Expt.</th>
<th>Training Time (ms/ frame)</th>
<th>Testing Time (ms/ frame)</th>
<th>DR (%)</th>
<th>FAR (%)</th>
<th>R</th>
<th>P</th>
<th>CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HARRIS</td>
<td>Min</td>
<td>1.98</td>
<td>2.02</td>
<td>60.00</td>
<td>63.33</td>
<td>0.60</td>
<td>0.49</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>1.98</td>
<td>2.36</td>
<td>65.00</td>
<td>65.00</td>
<td>0.65</td>
<td>0.50</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>1.98</td>
<td>2.54</td>
<td>61.67</td>
<td>66.67</td>
<td>0.62</td>
<td>0.48</td>
<td>0.54</td>
</tr>
<tr>
<td>FAST</td>
<td>Min</td>
<td>2.87</td>
<td>3.38</td>
<td>55.00</td>
<td>61.67</td>
<td>0.55</td>
<td>0.47</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>2.87</td>
<td>3.16</td>
<td>60.00</td>
<td>65.00</td>
<td>0.60</td>
<td>0.48</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>2.87</td>
<td>3.42</td>
<td>58.33</td>
<td>63.33</td>
<td>0.58</td>
<td>0.48</td>
<td>0.53</td>
</tr>
</tbody>
</table>
The test results show that the proposed anomaly detection system with HARRIS detector is capable of recognizing the anomaly event with average detection rate (9.09%, 52.17%, 61.67%) for the test video clips set from the three dataset respectively, the average false alarm rate was (18.79%, 36.09%, 66.67%). The obtained detection results are shown in figures (4.15). And with DRs= (7.88%, 46.09%, 58.33%) , FARs= (21.21%, 40.87%, 63.33%) for the three dataset respectively. figures (6, 7) illustrate the obtained R,P,CT.

Figure (6): The bar chart result of proposed anomaly detection system using HARRIS detector

Figure (7): The bar chart result of proposed anomaly detection system using FAST detector
A proposed method (utilizing seed filling technique in data stream clustering algorithm) for automatic detection of anomaly events system was proposed in this paper. This approach have lower computational complexity and fewer demands of dynamic parameter adjustment. The performance of the suggested approach improved when the features extracted by using interest points pairs from HARRS detector. Also the result of this method suffer from the stability problem of the result from data set to other. In ped1 dataset the view of camera effect the result that indicate poor detection rate. In ped2 dataset the detection rate improved but with amount of false alarm rates. Finally in VIRAT dataset give good detection rate but also with high false alarms. Further work is needed to increase the detection rate and decrease the false alarm rate.

References

2. Castro, J. L.; and Et al.; "Intelligent surveillance system with integration of heterogeneous information for intrusion detection"; Expert Systems with Applications; ELSEVIER; Vol. 38; PP.11182–11192; 2011.
3. Tang, Y.; Ma, B.; and Yan, H.; "Intelligent Video Surveillance System for Elderly People Living Alone Based on ODVS"; Advances in Internet of Things; SciRes; Vol. 3; PP. 44-52; 2013.
5. Roshtkhari, M. J.; "Visual Event Description in Videos"; PhD. Thesis; McGill University; Faculty of Graduate Studies and Research; Department of Electrical and Computer Engineering; Montreal; 2014.
17. Shechtman, E.; and Irani, M.; "Space-time behavior-based correlation or how to tell if two underlying motion fields are similar without computing them"; Pattern Analysis and Machine Intelligence, IEEE Transactions; Vol. 29; No. 11; pp. 2045-2056; 2007.
18. Willem, A.; "Robust suspicious behaviour detection for smart surveillance systems"; PhD. Dissertation; Queensland University of Technology; Faculty of Built Environment and Engineering; School of Engineering System; Brisbane; Australia; 2010.
A Proposed Data Stream Clustering Method for Detecting Anomaly Events in Crowd Scene Surveillance videos

Abdulamir A. Karim and Narjis Mezaal Shati

27. Cheng, L.; and Et al.; "An online discriminative approach to background subtraction"; In IEEE International Conference on Advanced Video and Signal based Surveillance; pp. 2; 2006.

30. Shati, N. M.; "2D-objects detection using back propagation neural networks"; MSc. Thesis; Al-Mustansiriah University; College of Science; 2006.

31. Ali, A. E.; "Multi object tracking using machine learning technique"; PhD. Dissertation; University of Technology; Department of Computer Science; 2015.