Abstract

The main result is to prove that the product of two positively defined operators is positively defined if and only if it is normal. In general, the normality is required cannot be dropped.

Keywords: Positively defined operators, Normal Operators, self-adjoint operators, Hilbert space.

Introduction

In 2002 Hichem M. Mortad communicated with Joseph A. Ball [2] proved the fact that if we have two self-adjoint operators (bounded or not) and if their product is normal, then it is self-adjoint provided a certain condition \(\sigma(A) \cap \sigma(-A) \subseteq \{0\} \) satisfied, where \(A \) is one of two self-
adjoint operators. However, nothing was said about the product of two positively defined operators, is positively defined or not? In this paper we answer this question positively, and we show that the normality is necessary for this case, we give a counter example.

We also note that one can prove this result without the condition \(\sigma(A) \cap \sigma(-A) \subseteq \{0\}\) we use the positivity of operators instead of this condition. We also use the famous Fuglede-Putnam Theorem.

Results

We recall Hichem M. Mortad Theorem [2]

Theorem 1. Let \(H\) and \(K\) be two bounded self-adjoint operators. Let \(K\) satisfies the condition
\[\sigma(A) \cap \sigma(-A) \subseteq \{0\}\]
If \(HK\) is normal then it is self-adjoint.

We also recall the Fuglede-Putnam Theorem [3]

Theorem 2. For normal operators \(N_1\) and \(N_2\) and arbitrary operator \(A\), if
\[AN_1 = N_2A\]
then \[AN_1^* = N_2^*A\].

Definition 1. A bounded operator \(A\) is said to be positively defined if \(A\) is self-adjoint and
\[\langle Ax, x \rangle \geq 0\]
for all \(x \in H\), where \(H\) is a Hilbert space.

We also recall the following Theorems [1]:

Theorem 3. Every positively defined operator \(A\) has a unique positively defined square root \(B\). Moreover, \(B\) commutes with every operator commuting with \(A\).

The following theorem with proof can be found in [1, Theorem 4.6.14]

Theorem 4. Product of two commuting positively defined operators is positively defined.

We present here the proof of known proposition.

Proposition 1. Let \(A\) and \(B\) be two self-adjoint operators, then \(AB\) is normal if and only if \(BA\) is normal.

Proof.

Let \(AB\) be normal that is
\[AB(AB)^* = (AB)^*AB\]

\[BA(AB)^* = BAA^*B^* = (AB)^*AB\]
= AB(AB)^*
= ABB^*A^*
= (BA)^*BA.
Conversely, similarly we get
AB(AB)^* = (AB)^*AB.

Proposition 2. Let H be a Hilbert space, if A is a positively defined in H then A^2 is also a positively defined in H.

The main result:

Theorem 5. Let H be a Hilbert space, let A and B be two positively defined operators on H, AB is positively defined operator if and only if AB is normal.

Proof.
The proof of AB is normal when AB is positively defined is obvious. Conversely, let AB be normal, by Proposition 1 also BA is normal, corresponding to Theorem 2 let

$$N_1 = BA \quad \text{and} \quad N_2 = AB$$

and A is an arbitrary bounded operator so we have

$$ABA = ABA$$

then

$$A(BC)^* = (AB)^*A$$
$$AA^* B^* = B^* A^* A$$
$$AAB = BAA$$
$$A^2 B = BA^2.$$

Since A^2 commutes with B and A is positively defined Proposition 2 implies A^2 is also positively defined, and so by Theorem 3 we have

$$AB = BA.$$

So by Theorem 4 we get AB is positively defined.

3- Counter Example
The normality of AB in Theorem 5 is necessary for positivity of AB. If AB is not normal then AB is not always positively defined, we give the following counter example:

Example 1. Let

$$A = \begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

it easy to check that both A and B are positively defined, and AB is not normal. Also it easy to check that AB is not self-adjoint and so it is not positively defined.

References